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Abstract. The dynamical behaviour of the van Hemmen model of spin glass is studied by 
comparingthe time evolutionof two configurations subjected to the same thermal noise. It 
was found that the system undergoes Several dynamical phase transitions among the 
paramagnetic, ferromagnetic, spin-glass and mixed phases. The dynamical phase diagram 
seems to be in good agreement with the static one. In the spin glass phase, the system 
presents a quite different dynamical behaviour from that found in short-range spin glass 
models~as well as in the Sherrington-Kirkpatrick model. 

1. Introduction 

The spreading of damage concept. originally introduced to study the structure of the 
phase space in complex systems (cellular automata, non-symmetric neural nets and 
spin glasses. etc.) has also been shown to be an important tool in the study of magnetic 
systems [l-111. In the last few years, this technique has been applied to a great variety 
of models in order to understand the possible connections between their dynamical 
and thermodynamical properties and to obtain information on the structure of the 
phase space of unsolved models like short-range spin glasses, among others [8-121. 

The method is based on the time evolution comparison of two or more configu- 
rations submitted to the same thermal noise. By analysing the behaviour of the 
Hamming distance as a function of the temperature and the initial conditions, a 
dynamical phase diagram of the system may be constructed. 

Monte Carlo simulations on diverse spin models suggest a strong correlation 
between the static and dynamical phases of magnetic systems. Nevertheless, due to 
the lack of a general theory for the spreading of damage method, it is not possible to 
guarantee that they will necessarily agree. Indeed, for some models, the existence of 
relationships between static and dynamical quantities has been analytically proved 
[13-161. Nevertheless, this technique always allows one to obtain information on the 
free energy landscape of the model by studying the dependence of the Hamming 
distance evolution on the initial conditions. 

The spin glass theory has been a difficult problem in statistical mechanics (see for 
example [19]). For many years there has been great controversy on whether the spin 
glass transition is either of thermodynamical or of dynamical nature. However, 
simulations [20] and phenomenological scaling arguments at zero temperature [21] 
suggested the existence of a true thermodynamical phase transition. Until now, only 
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mean field models are exactly tractable, but, they require sophisticated mathematical 
tools [17,18]. In the last few years spin glasses have been studied also through the 
spreading of damage method. When submitted to heat bath dynamics the three- 
dimensional spin glass has three regimes: at high temperature the Hamming distance 
vanishes; at intermediate temperatures the Hamming distance is non-zero and it is 
independent of the initial distance; at low temperatures the Hamming distance 
depends on the initial conditions. For the Sherrington-Kirkpatrick (SK) model, 
Derrida found only two regimes, bsth with non-zero Hamming distance. In the low 
temperature regime its value depends on the initial distance but at high temperatures 
it does not. 

In this paper we study the spreading of damage on the spin glass mean field model 
introduced by van Hemmen [17]. It is the simplest model that contains both 
randomness and frustration. It is exactly soluble, and, unlike the 
Sherrington-Kirkpatrick [18] model, its solution does not require the use of the 
replica trick. In spite of being non-realistic, mean field models give a first qualitative 
understanding of the thermodynamical behaviour. It is then interesting to study the 
similarities and differences among the dynamical behaviour of the van Hemmen 
model, the SK model and the short-range models, as well as whether the dynamical 
phase diagram coincides with the static one. 

The present paper is organized as follows: In section 2 we introduce the van 
Hemmen model and describe the thermodynamical phase diagram obtained in [17]. In 
section 3 the method used for the study of the time evolution of the Hamming distance 
is presented. In section 4 we analyse the dynamical phase diagram and compare it with 
the static one. Finally, in section 5 the main results are discussed. 
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2. Model 

i h e  van Hemmen model of spin glass consists of a fully connected net of N Ising spins 
described by the following Hamiltonian [17]: 

, .  

where (i, j) denotes a sum over all possible pairs of spins, Jo represents a ferromagne- 
tic coupling, h is an external magnetic field, and the Jjjs are the spin glass random 
couplings given by 

J 

.. .,. , 
l", * :I' L 

J;j =F (L?, + 51%). (2) 

The tis and the 7;s (i= 1, . . . , N) are independent, identically distributed random 
variables with zero mean value. In particular, we restrict ourselves to the case in which 
they can take the values +1 and -1. 

Let us briefly describe the thermodynamical phase diagram of the model. 
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Figure 1. The phase diagram of the van Hemmen model obtained in [I71 and the cuts I, U, 
111, 1%' and V (cut I11 is along the JdJ=O axis). 

Following~van Hemmen [17] wz define three order parameters, namely 

In the limit N+ the free energy is given by 

(6) 
.1 f(P) = min - mz + Jq1'q2 (In cosh(P(J& +J(q25+qlq) + hm))) G P 

where min indicates that the argument has to be evaluated at the values of M, q, and 4% 
that minimize it and (. . .)denotes an average over the Es and the 7s. It can be shown 
that these minimum corresponds always to the case q,N=q2N= q, and then the mean 
field equations take the form 

(7) 
m=(tanh(B(J~m+q(E+v) + h ) ) )  

q=t ( (5+?) tanh(P(Joi~+q(E+rl )  +h))). 
The phase diagram at zero magnetic field obtained by van Hemmen is shown in 

figure 1. The paramagnetic phase corresponds to the trivial solution M = q = 0. When 
m f 0  and q = 0 the system is ferromagnetic and when q # O  and m = 0 the system is a 
spin glass. It also presents a mixed phase for which both q and m are non-zero. 
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3. Method 

We study the behaviour of the system described by (1) with zero magnetic field ( h  = 0) 
when ruled by a heat bath Monte Carlo dynamics. At any time t ,  a site is chosen 
randomly and its spin is updated by setting the new value of Si at time t+ dt according 
to the following rule: 
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+ 1 with probability [l 
- 1 with probability [1+ ei#’’f]-’ (8) I si(r + dt) = 

where hi is the local field at site i defined as 
N 

h ; = x  JjiSi. 
i i i  

(9) 

Since the updating is done sequentially, the natural scale for the Monte Carlo step 
is UN.  

The spreading of damage method consists of the following procedure: we take an 
equilibrium configuration of the system {S:(O)} at a given temperature and make a 
copy of it. This copy is damaged by inverting a certain fraction of its spins. Let us call 
this damaged copy {S!(O)}. Next we let both configurations evolve according to (8) and 
with the same random sequence, and calculate the time averaged Hamming distance 
A, with A(t) given by 

This time average is always calculated over ~r = 500 Monte Carlo steps. For each 
temperature, (A) is obtained by averaging over a set of M samples with different initial 
conditions, random sequence and spin glass couplings. M depends both, on the sue of 
the system and on the temperature. These procedure is then repeated for different 
values of the ferromagnetic coupling Jo and temperature. 

Note that A(r) measures the fraction of sites for which the two configurations are 
different at a given time t .  If at any time they meet, that is, they become identical, they 
will remain identical for all the subsequent steps. Let us define (dh) as the mean 
Hamming distance averaged only over the surviving samples, i.e. over those samples 
whose Hamming distance does not become zero up to time r. The (dh) and (A) are 
related through the following equation: 

(A) = P ( W h )  (11) 
where P(t) is the fraction of samples that have survived up to time t .  When working on 
a finite lattice, P(t) is expected to depend both on the sue of the system Nand on the 
time cut-off z. while (dh) seems to be rather constant. Then. in what follows, we 
calculate the (dh) and P(r)  instead of (A). 

In order to study the dependence of (dh) on the initial damage, we consider only 
two different kind of initial conditions: 

random: spins are inverted with probability t; 
opposite: each spin is inverted. 

Since the lattice is fully connected, we are limited to working with small systems. For 
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any point of the diagram the calculations were always performed for N =  128, N=256 
and N=512. 

4. DynamicaJ phase diagram 

Due to the full connectivity of the model, a complete calculation of the dynamical 
phase diagram would require a huge numerical effort. Then, we restrict ourselves to 
analysing the behaviour of the system along the five cuts in the (T/J,  Jo/J)  phase 
displayed in figure 1. Three cuts correspond to fixed Jo/J(Jo/J=0.25, 1.5 and 0)  and 
the other two to fixed T/J(T/J=0.3 and 0.7) .  The J value was fixed to be 1, and 
henceforth we will refer to the JdJ  and T/J axes as Jo and T,  respectively. 

In figure Z(a) we present the results for Jo = 0.25 (cut I ) .  The system displays three 
different dynamical regimes: 

for low temperatures (T<T,=O.ll), (dh)#O and its value depends on the initial 

0 in the intermediate regime (T< T1<T2=0.975),  (dh)#O and its value is indepen- 

0 for high temperatures ( T Z T , )  (dh) is always zero. 

The lower transition temperature Tl=O.ll is in good agreement with the mixed-spin 
glass transition temperature calculated from (7), and it does not seem to depend on 
the size of the system as far as we can infer from our simulations. On the other hand, it 
is more difficult to determine T2 because, close to this transition, the surviving 
probability P(r) goes abrnptally to zero (see figure 2(b)) and depends strongly on the 
size of the system and on the time cut-off z. The computational time needed to get an 
adequate number of surviving samples increases in such-a way that makes impossible 
to obtain a more accurate value for T2. However, although its value is lower than the 
corresponding thermodynamical transition temperature T, = 1, it seems to approach 
this values as N increases. We note that. unlike other mean-field models (for example 
the ferromagnetic king model or Sherrington-Kirkpatrick model), in this case (dh) 
falls abruptly near the spin glass-paramagnetic temperature transition. But as N 
increases, this jump seems to decrease. It is impossible to infer from our simulations 
whether this discontinuous behaviour exists in the thermodynamical limit or is due to 
finite-size effects. 

In figure 2(c) we show the behaviour of ( t )  as a function of T,  where ( t )  is defined as 
the averaged time needed by two configurations with random initial conditions to 
meet in the phase space. Unlike (dh), it is easy to calculate ( t )  near Tz because, in this 
region almost no pair of configurations survives. As N increases (c) seems to diverge at 
two different temperatures. Here again, the lower one does not depend in a sensible 
way on the size of the system'while the higher one increases as N increases. 
Nevertheless, the cusp form of the curve leads us to believe that the system actually 
undergoes a dynamical transition at a temperature close, to the spin glass- 
paramagnetic transition temperature. 

In order to obtain more information about the free energy landscape of the system 
in the low and intermediate phases, in figure 3 we present the distribution of the 
Hamming distance for those pairs of configurations with random initial conditions that 
have survived at t=r=500MCS,forJo=0.25, N=265,  an for both T=0.075 (below 
TI,  figure 3(a)) and T=0.20 (above Tl figure 3(b)). At T=0.2, in-the intermediate 

damage between the configurations; 

dent of the initial damage; 
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FigurcZ. Damage for JdJ=O.25 as a function of the temperature: (a) distance (dh) 
between two configurations provided they are still different; (b) the fraction P(t) of non- 
identical configurations; and (c) the time (!) needed for two configurations to become 
identical. 
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spin glass phase, the system presents only one attractor, being the histogram sharply 
peaked around (dh)=&. In terms of the free energy landscape, we can conclude that, 
if the system has a multivalley structure, all these valleys should be equally spaced. 
The T =  0.075 histogram-displays a double peaked distribution around (dh)=O.5 and 
(dh)  = 1.0. In particular, note that the peak around (dh)=O.5 is wider than the peak 
found at T =  0.2, showing that the system has a multivalley structure with different 
Hamming distance among the valleys. 

We have performed the same calculations for the cut Jo=0.5 and the results are 
qualitatively similar, displaying the three dynamical phases found for cut I. Here 
again. the lower critical temperatures T,=O.23 is in a good agreement with the 
corresponding thermodynamical critical temperature and T2 depends on the size of the 
system, but as,Nincreases. it seems to approach the static critical temperature T,= 1, 
corresponding to the spin glass-paramagnetic transition. 
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In figure 4 we show the behaviour of (dh) versus.T for Jo= 1.5. Here, the system 
displays the typical mean-field king ferromagnetic behaviour, with only two regimes: 
the low temperature one, where (dh)#O and its value is independent of the initial 
damage between the configurations, and a high temperature one where (dh) always 
vanishes. The dynamical transition temperature is lower than the thermodynamical 
transition temperature T, = 1.5, and it depends on the size of the system N ,  approach- 
ing this value as N increases. 

Figure 5 presents the Jo=O behaviour of (dh). It is interesting to note that, in total 
agreement with the thermodynamical phase diagram, the mixed phase does not 
appear at finite temperature. The system presents only two regimes: the intermediate 
and the high temperature ones of figure Z(a). This is a surprising result: even starting 
with opposite configurations,  for^ any finite value of T they will end up in two 
uncorrelated valleys. In this particular case the system can be decoupled into two non- 
interacting subsystems, each one with approximately half of the spin of the net. One 
subsystem is ferromagnetic and presents a low temperature dynamical phase in which 
the Hamming distance does not vanish. The other subsystem is anti-ferromagnetic, 
and due to the strong frustration it does not order, even at T= 0. Although this system 
is very similar to the Hopfield model for associative memory with only two stored 
patterns, they present a completely different dynamical behaviour. This difference is 
due to the fact that, unlike the van Hemmen model, the Hopfield model with two 
memories is not frustrated it can also be decoupled into two non-interacting 
subsystem, but both of them are ferromagnetic. 

Figures 6 and 7 show the (dh) versus Ja behaviour of the system for T=O.3 and 
T=0.7. Note that close to the spin glass-ferro and to the spin glass-mixed static 
transitions the system undergoes a dynamical transition that can be determined with 
good accuracy. In figure 6 we observe that the system undergoes a second dynamical 
transition for higher values of the ferromagnetic coupling, but it does not agree with 
the transition value of the static diagram. We believe that this is due to the fact that 
this transition is a first-order one, and so is harder to determine numerically an 
accurate value of the corresponding parameter. 
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Figure4. The distance (dh) for JdJ= 1.5 as a function of the temperature 
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5. Discussion 

In this paper we have studied the Hamming distance behaviour of the van Hemmen 
model of spin glass, when submitted to a heat bath Monte Carlo process. The 
thermodynamical phase diagram obtained in [17] is compared with a dynamical one, 
based on the sensibility of the Hamming distance on the initial damage. The system 
undergoes different dynamical transitions which seem to be in good agreement with 
those static transitions found in [17]. Unfortunately, more accurate quantitive results 
are very difficult to obtain. 

From the dynamical behaviour of the system presented in the former section, we 
observe that the strong correlation that exists between the statical and dynamical 
phase 'diagram can be summarized as follows: 

l.o t 
1 v o  P 0.8 1 

0.4 0 

0.2 

' ' I " " ' * ' 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 ~ 1 . 8  2.0 

J 

Figureb. The distance (dh) for TIJ=O.3 as a function of J O N  
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Figure7. The distance (dh) for TU-0.7 as a function of JdJ. 

1. The spin glass phase of this model is characterized by a non-zero Hamming 
distance value that does not depend on the initial distance between the configurations 
and by a peaked distribution of distances. This behaviour is a novel result for a spin 
glass phase, since other systems studied (short-range model and the SK mean field 
model) display a spin glass phase characterized by a non-zero value of the Hamming 
distance which depends on the initial damage (as occurs in the mixed phase of the van 
Hemmen model). 

2.  In the parmagneticphase the Hamming distance is always zero. This behaviour 
is also different from that found in other models: the SK mean field model in the 
paramagnetic phase presents a non-zero Hamming distance, and short-range models 
display an intermediate phase probably associated to a Griffiths phase in which the 
final distance is independent of initial distance. 

3. In the ferromagnetic phase the Hamming distance is different from zero, and 
presents the usual behaviour found in ferromagnetic system at low temperatures. 

4. In the mixed phase, the system presents the dynamical behaviour found in the 
spin glass phase for the SK model and for the 3~ short-range king spin glass model. 

It is not clear for us up to now why the van Hemmen model displays a completely 
different behaviour from that found in other spin glass model. In particular. the 
divergence between this model and the SK model in the spin glass and in the 
paramagnetic phase is surprising, since both models share the main properties. 
namely both have frustration, randomness and are fully connected. In fact, the only 
difference is due to the spin-glass coupling distribution. 
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